مقاله سرا

این وبلاگ حاوی مقاله های بسیار کاربردی میباشد امیدواریم نهایت استفاده از آنها را ببرید

مقاله سرا

این وبلاگ حاوی مقاله های بسیار کاربردی میباشد امیدواریم نهایت استفاده از آنها را ببرید

تابع


تابع

قسمتی از نمودار یک تابع. هر عدد x در عبارت f(x) = x3 - x قرار می‌گیرد.

 

قسمتی از نمودار یک تابع. هر عدد x در عبارت f(x) = x3 - x قرار می‌گیرد.

در ریاضیات، یک تابع رابطه‌ای است که هر متغیر دریافتی خود را فقط به یک خروجی نسبت می‌دهد. علامت استاندارد خروجی یک تابع f به همراه ورودی آن، x می‌باشد یعنیf(x)\,. به مجموعه ورودی‌هایی که یک تابع می‌تواند داشته باشد دامنه و به مجموعه خروجی‌هایی که تابع می‌دهد برد می‌گویند.

برای مثال عبارت f(x) = x2 نشان دهنده یک تابع است، که در آن f مقدار x را دریافت می‌کند و x2 را می‌دهد. در این صورت برای ورودی 3 مقدار 9 به دست می‌آید. برای مثال، برای یک مقدار تعریف شده در تابع f می‌توانیم                             بنویسیم، f(4) = 16.

معمولاً در تمارین ریاضی برای معرفی کردن یک تابع از کلمه f استفاده می‌کنیم و در پاراگراف بعد تعریف تابع یعنی f(x) = 2x+1 را می‌نویسم و سپس f(4) = 9. وقتی که نامی برای تابع نیاز نباشد اغلب از عبارت y=x2 استفاده می‌شود.

وقتی که یک تابع را تعریف می‌کنیم، می‌توانیم خودمان نامی به آن بدهیم، برای مثال:

\mathrm{Square}(x)\, =\, x^2.

یکی از خواص تابع این است که برای هر مقدار باید یک جواب وجود داشته باشد، برای مثال عبارت:

\mathrm{Root}(x) = \pm \sqrt x

یک تابع نمی‌باشد، زیرا ممکن است برای یک مقدار دو جواب وجود داشته باشد. جذر عدد 9 برابر 3 است و در این رابطه اعداد +3 و -3 به دست می‌آیند. برای ساختن یک تابع ریشه دوم، باید فقط یک جواب برای آن وجود داشته باشد، یعنی:

\mathrm{Posroot}(x) = \sqrt x,

که برای هر متغیر غیرمنفی یک جواب غیرمنفی وجود دارد.

در یک تابع لزومی ندارد که حتماً بر روی عدد علمیاتی انجام گیرد. یک مثال که نشان می‌دهد که عملیاتی بر روی عدد انجام نمی‌شود، تابعی است که پایتخت یک کشور را معین می‌کند. مثلاً Capital(France) = Paris.

حال کمی دقیق‌تر می‌شویم اما هنوز از مثال‌های خودمانی استفاده می‌کنیم. A و B دو مجموعه هستند. یک تابع از A به B با به هم پیوستن مقادیر منحصر به فرد درون A معین می‌شود و مجموعه B به دست می‌آید. به مجموعه A دامنه تابع می‌گویند؛ مجموعه B هم تمام مقادیری را که تابع می‌تواند داشته باشد شامل می‌شود.

در بیشتر زمینه‌های ریاضی، اصطلاحات تبدیل و نگاشت معمولاً با تابع هم معنی پنداشته می‌شوند. در هر حال ممکن است که در بعضی زمینه‌های خصوصیات دیگری داشته باشند. برای مثال در هندسه، یک نگاشت گاهی اوقات یک تابع پیوسته تعریف می‌شود.

تعاریف ریاضی یک تابع

یک تابع f یک رابطه دوتایی است، به طوری که برای هر x یک و فقط یک y وجود داشته باشد تا x را به y رابطه دهد. مقدار تعریف شده و منحصر به فرد y با عبارت (f(x نشان داده می‌شود.

به دلیل اینکه دو تعریف برای رابطه دوتایی استفاده می‌شود، ما هم از دوتعریف برای تابع استفاده می‌کنیم.

تعریف اول

تعریف ساده رابطه دوتایی عبارتست از: «یک رابطه دوتایی یک زوج مرتب می‌باشد». در این تعریف اگر رابطه دوتایی دلالت بر «کوچکتر از» داشته باشد آن گاه شامل زوج مرتب‌هایی مانند (2, 5) است، چون 2 از 5 کوچکتر است.

یک تابع مجموعه‌ای از زوج مرتب‌ها است به طوری که اگر (a,b) و (a,c) عضوی از این مجموعه باشند آن گاه b با c برابر باشد. در این صورن تابع مجذور شامل زوج (3, 9) است. رابطه جذر یک تابع نمی‌باشد زیرا این رابطه شامل زوج‌های (9, 3) و (9, -3) است و در این صورت 3 با -3 برابر نیست.

دامنه تابع مجموعه مقادیر x یعنی مختص‌های اول زوج‌های رابطه مورد نظر است. اگر x در دامنه تابع نباشد آن گاه (f(x هم تعریف نشده‌است.

برد تابع مجموعه مقادیر y یعنی مختص‌های دوم زوج‌های رابطه مورد نظر است.

تعریف دوم

بعضی از نویسندگان نیاز به تعریفی دارند که فقط از زوج‌های مرتب استفاده نکند بلکه از دامنه و برد در تعریف استفاده شود. این گونه نویسندگان به جای تعریف زوج مرتب از سه‌تایی مرتب (X,Y,G) استفاده می‌کنند، که در آن X و Y مجموعه هستند (که به آنها دامنه و برد رابطه می‌گوییم) و G هم زیرمجموعه‌ای از حاصل‌ضرب دکارتی X و Y است (که به آن گراف رابطه می‌گویند). در این صورت تابع رابطه دوتایی است که در آن مقادیر X فقط یک بار در اولین مختص مقادیر G اتفاق می‌افتد. در این تعریف تابع دارای برد منحصر به فرد است؛ این خاصیت در تعریف نخست وجود نداشت.

شکل تعریف تابع بستگی به مبحث مورد نظر دارد، برای مثال تعریف یک تابع پوشا بدون مشخص کردن برد آن امکان‌ناپذیر است.


پیشینه تابع

«تابع»، به عنوان تعریفی در ریاضیات، توسط گاتفرید لایبنیز در سال 1694، با هدف توصیف یک کمیت در رابطه با یک منحنی به وجود آمد، مانند شیب یک نمودار در یک نقطه خاص. امروزه به توابعی که توسط لایبنیز تعریف شدند، توابع مشتق‌پذیر می‌گوییم، اغلب افراد این توابع در هنگام آموختن ریاضی با این گونه توابع برمی خورند. در این گونه توابع افراد می‌توانند در مورد حد و مشتق صحبت کنند. چنین توابعی پایه حسابان را می‌سازند.

واژه تابع بعدها توسط لئونارد اویلر در قرن هجدهم، برای توصیف یک عبارت یا فرمول شامل متغیرهای گوناگون مورد استفاده قرار گرفت، مانند f(x) = sin(x) + x3.

در طی قرن نوزدهم، ریاضی‌دانان شروع به فرموله کردن تمام شاخه‌های ریاضی کردند. ویرسترس بیشتر خواهان به وجود آمدن حسابان در علم حساب بود تا در هندسه، یعنی بیشتر طرفدار تعریف اویلر بود.

در ابتدا، ایده تابع ترجیحاً محدود شد. برای ژوزف فوریه مدعی بود که تمام توابع از سری فوریه پیروی می‌کنند در حالی که امروزه هیچ ریاضی‌دانی این مطلب را قبول ندارد. با گسترش تعریف توابع، ریاضی‌دانان توانستند به مطالعه «عجایب» در ریاضی بپردازند از جمله این که یک تابع پیوسته در هیچ مکان گسستنی نیست. این توابع در ابتدا بیان نظریه‌هایی از روی کنجکاوی فرض می‌شد و آنها از این توابع برای خود یک «غول» ساخته بودند و این امر تا قرن بیستم ادامه داشت.

تا انتهای قرن نوزدهم ریاضی‌دانان سعی کردند که مباحث ریاضی را با استفاده از نظریه مجموعه فرموله کنند و آنها در هر موضوع ریاضی به دنبال تعریفی بودند که از مجموعه استفاده کند. دیریکله و لوباچوسکی هر یک به طور مستقل و تصادفاً هم زمان تعریف «رسمی» از تابع دادند.

در این تعریف، یک تابع حالت خاصی از یک رابطه است که در آن برای هر مقدار اولیه یک مقدار ثانویه منحصر به فرد وجود دارد.

تعریف تابع در علم رایانه، به عنوان حالت خاصی از یک رابطه، به طور گسترده‌تر در منطق و علم تئوری رایانه مطالعه می‌شود.

 توابع در سایر علوم

توابع مورد استفاده در اکثر علوم کمی می‌باشند، برای مثال در فیزیک، هنگامی که می‌خواهیم رابطه بین چند متغیر را بیان کنیم، مخصوصاً در زمانی که مقدار یک متغیر کاملاً وابسته به متغیر دیگر است. برای مثال وقتی که می‌خواهیم نشان دهیم که تغییر دمای آب چه تاثیری بر روی چگالی آن می‌گذارد.

توابع را همچنین مورد استفاده در علم رایانه برای مدل‌سازی ساختمان داده‌ها و تاثیرات الگوریتم می‌بینیم. این کلمه در رویه‌ها و زیرروال‌ها بسیار دیده می‌شود.


اصطلاحات توابع

به یک مقدار ورودی مشخص در یک تابع، آرگومان تابع می‌گویند. برای هر آرگومان x، مقدار منحصر به فرد y در مجموعه اعداد برد تابع وجود دارد که با آن مطابقت می‌کند، و به آن مقدار در x یا تصویر x تحت f می‌گویند. تصویر x می‌تواند با (f(x و یا y نشان داده شود.

گراف تابع f مجموعه تمام زوج مرتب‌های ((x, f(x) به ازای تمام xهای درون دامنه X است. اگر X و Y زیرمجموعه‌هایی از R (اعداد حقیقی) باشند، در این صورت این تعریف مانند شهود «گراف» به عنوان یک تصویر یا نمودار تابع به همراه زوج مرتب‌های نقاط در محور مختصات است.

مفهوم تصویر را می‌توان اتصال مجموعه‌ای از نقاط تصویر به هم دانست. اگر A زیرمجموعه‌ای دامنه باشد، آن گاه (f(A هم زیرمجموعه‌ای از برد است که شامل تمام تصویرهای‌های مقادیر A می‌شود. در این صورت می‌گوییم که (f(A تصویر A تحت f است.

به یاد داشته باشید که برد f همان تصویر (f(X در مقادیر دامنه‌است و برد f زیرمجموعه‌ای از مجموعه تمام مقادیر ممکن برای f است.

وارون (یا معکوس) مجموعه B که مجموعه مقایر ممکن برای Y تحت تابع f است زیرمجموعه‌ای از دامنه X است که به این صورت تعریف می‌شود:

f −1(B) = {x in X | f(x) is in B}

برای مثال، وارون مجموعه {4, 9} تحت تابع مربع مجموعه {−3,−2,+2,+3} است.

به طور کلی، وارون یک نقطه منحصر به فرد (نقطه‌ای که فقط یک مقدار برای آن وجود داشته باشد)، می‌تواند مجموعه تمام اعداد را دربرگیرد. برای مثال اگر f(x) = 7 باشد، آن گاه وارون {5} تهی است اما وارون {7} برابر مقادیر دامنه آن است. در این صورت وارون یک مقدار در برد زیرمجموعه‌ای از دامنه آن است. طبق قرارداد وارون یک مقدار یعنی f −1(b) ویا همان f −1({b}) به صورت زیر است:

f −1(b) = {x in X | f(x) = b}

مهمترین توابع عبارتند از:

·  تابع یک‌به‌یک، که در آن این خاصیت وجود دارد که اگر f(a) = f(b) باشد آن گاه a هم باید با b برابر باشد.

·  تابع پوشا، که در آن این خاصیت وجود دارد که برای هر y در برد، یک مقدار x در دامنه وجود داشته باشد یعنی f(x) = y.

·         توابعی که هم یک‌به‌یک و هم پوشا هستند.

اگر از تعریف اول تابع که در بالا گفته شد استفاده شود، تا موقعی که برد تعریف نشده باشد، «یک‌به‌یک» بودن تابع باید وضعیتی مانند پوشا بودن را داشته باشد. می‌توان از ترکیب دو یا چند تابع به عنوان یک تابع استفاده کرد. برای مثال، f(x) = sin(x2) ترکیب یک تابع سینوسی و یک تابع درجه دو است. توابع fX  Y و gY  Z می‌توانند با هم ترکیب شوند، به طوری که ابتدا این عمل بر روی تابع f انجام شود و y = f(x) به دست آید و یک بار هم بر روی g اعمال شود و z = g(y) به دست آید. تابع مرکب g و f به صورت زیر نوشته می‌شود:

g\circ f\colon X \to Z \,\!x \mapsto g(f(x)) \,\!

ابتدا تابع سمت راست عملیات را انجام می‌دهد و سپس تابع سمت چپ (برعکس زبان انگلیسی) و این تابع را «جی‌اُاِف» می‌خوانیم.

در تعریفی غیرعلمی، تابع وارون f تابعی است که اثر تابع f را خنثی کند، به این صورت که هر مقدار (f(x را به آرگومان x نسبت دهد. تابع مربع (درجه دو) وارون تابع غیرمنفی جذر (ریشه دوم) است، به طوری که اگر f دارای دامنه X و برد Y و گراف G باشد، آن گاه وارون آن دارای دامنه Y و برد X و گراف است.

G−1 = { (y, x) : (x, y) G }

برای مثال اگر گراف f برابر G = {(1,5), (2,4), (3,5)} باشد، آن گاه گراف f−1 برابر G−1 = {(5,1), (4,2), (5,3)} می‌شود.

رابطه f−1 یک تابع است اگر و تنها اگر برای هر y در برد فقط یک آرگومان x مانند f(x) = y وجود داشته باشد، به عبارت دیگر، وارون تابع f یک تابع است اگر و تنها اگر f پوشا و یک‌به‌یک باشد. در این مثال، برای هر x درون X f−1(f(x)) = x و برای هر y درون Y f(f−1(y)) = y است. گاهی اوقات می‌توان یک تابع را تغییر داد و این کار اغلب با جایگذاری دامنه‌ای جدید که زیرمجموعه‌ای از دامنه قبلی باشد صورت می‌گیرد، و همینطور باید تغییرات را در برد و گراف اعمال کرد که در این صورت تابع تغییر داده شده دارای وارونی است که خود یک تابع است.

برای مثال وارون تابع y = sin(x)، یعنی f(x) = arcsin (x)، به صورت y = arcsin (x) تعریف می‌شود اگر و تنها اگر x = sin(y) باشد، و این یک تابع نیست زیرا گراف آن شامل دو زوج مرتب (0, 0) و (0, 2π) است. اما اگر دامنه y = sin(x) را به −π/2  x  π/2 تغییر دهیم، برای برد داریم −1  y  1 و در این صورت وارون تابع مورد نظر یک تابع است، و برای بیان آن از A در حرف اول آن استفاده می‌کنیم، یعنی (f(x) = Arcsin (x.

اما این روش برای همه توابع عملی نیست، زیرا در بعضی موارد پیدا کردن وارون توابع غیرممکن است.

مشخص کردن تابع

اگر دامنه X تعریف شده باشد، تابع f را می‌توان با جدول‌بندی کردن آرگومان‌های x و جواب آنها در f(x) تعریف کرد.

چیزی که برای تعریف کردن تابع رایج‌تر است استفاده از فرمول و به طور کلی استفاده از الگوریتم است، که در آن نشان داده می‌شود چه عملیاتی باید بر روی xهای دامنه انجام گیرد تا f(x) به دست آید. برای تعریف یک تابع می‌توان از عمل ریاضی که با آرگومان x رابطه‌ای داشته باشد استفاده کرد. البته راه‌های زیاد دیگری برای تعریف یک تابع وجود دارد؛ از جمله استفاده از روش بازگشتی، استفاده از بسط‌های تجزیه و عبارات جبری، حدها، دنباله‌ها، سری‌ها و استفاده از معادلات دیفرانسیل.

در ریاضیات توابع زیادی وجود دارد که نمی‌توانند مفهوم خود را به طور دقیق برسانند. یکی از نتایج اصلی نظریه شمارش این است که توابع زیادی وجود دارند که تعریف می‌شوند اما قابل محاسبه نیستند.

علامت تابع

معمولاً پرانتزهای کنار آرگومان را هنگامی که برای آن ابهامی وجود ندارد حذف می‌کنند، مانند: sin x. در برخی موارد علمی، از علامت نشان‌گذاری لهستانی معکوس استفاده می‌شود، که با این کار باید پرانتزها را حذف کرد؛ و برای مثال تابع فاکتوریل همواره به صورت n! نوشته می‌شود، در حالی که اکثر افراد تابع گاما را به صورت (Γ(n می‌نویسند.

برای نشان دادن یک تابع ابتدا نام آن را می‌آوریم، سپس دامنه، بعد برد و در انتها هم ضابطه تابع را می‌نویسیم. با استفاده از این روش اغلب تابع به دو قسمت نشان داده می‌شود، مانند:

f\colon \mathbb{N} \to \mathbb{R} \,\!n \mapsto \frac{n}{\pi} \,\!

در اینجا دامنه تابع با نام «f» اعداد طبیعی و برد آن اعداد حقیقی است، و n را به خودش تقسیم بر π تبدیل می‌کند. (در بعضی موارد نام تابع را به همراه دونقطه، در بالای پیکان می‌آورند). روش نشان دادن دیگری هم وجود دارد که رایج‌تر اما غیرعلمی‌تر است، در این روش تابع به شکل کوتاه‌ شده زیر نشان داده می‌شود:

f(n) = \frac{n}{\pi} , \,\!

در این روش اطلاعات کمتری ارائه شده‌است و ما از دامنه و برد تابع خبر نداریم، و در این صورت به جای n می‌توانیم هر عددی از قبیل اعداد گنگ هم قرار دهیم.

بعضی از نویسندگان به جای استفاده از (f(A از [f[A استفاده می‌کنند و این کار برای رفع ابهام میان دریافت مفاهیم است، بعضی دیگر هم از f`x به جای (f(x، و f``A به جای [f[A استفاده می‌کنند.

توابع با چند ورودی و خروجی

توابع دو (یا چند) متغیره

مفهوم تابع را می‌توان با ترکیب دو یا چند آرگومان بیان کرد. این مفهوم شهودی، زمانی می‌تواند تعریف شود که دامنه تابع حاصل‌ضرب دکارتی دو یا چند مجموعه باشد.

برای مثال، عملیات را بر روی تابع ضربی که از دو عدد صحیح برای به دست آوردن حاصل استفاده می‌کند انجام می‌دهیم: f(x, y) = x·y. تابع می‌تواند دامنه Z×Z، مجموعه تمام زوج‌ها به عنوان برد Z، و برای گراف، مجموعه تمام زوج‌های ((x,y), x·y) را داشته باشد. به یاد داشته باشید که مولفه اول چنین زوج‌هایی یک زوج از اعداد صحیح است، در حالی که مولفه دوم تنها یک عدد صحیح است.

مقدار تابع زوج (x,y) برابر است با f((x,y)). اگر چه معمولاً یک جفت از پرانتزها را حذف می‌کنند و آن را به شکل f(x,y) نشان می‌دهند، یعنی یک تابع دومتغیره شامل x و y.

توابعی که حاصلشان یک مجموعه ضرب است

در این گونه توابع، مقدار تابع شامل چند متغیر است. برای مثال، تابع mirror(x, y) = (y, x) را با دامنه R×R و برد R×R در نظر بگیرید. زوج (y, x) یکی از مقادیر برد تابع که یک مجموعه‌است، می‌باشد.

عملیات دوتایی

منظور ار عملیات دوتایی ساده در ریاضی همان جمع و ضرب است، وقتی که در توابع استفاده شوند مقادیر را از Z×Z به Z می‌برند. این موضوع در جبر شرح داده می‌شود و در آنجا از توابع nتایی برای انجام عملیات استفاده می‌شود.

چیزی که از گذشته مورد استفاده قرار می‌گرفته این است که از عملیات جمع و ضرب به عنوان نشانه‌های میان‌وندی استفاده شود: x+y و x×y به جای +(x, y) و ×(x, y).


مجموعه توابع

مجموعه یک تابع از یک مجموعه X به یک مجموعه Y به صورت X Y یا [X Y] یا YX نشان داده می‌شود. آخرین عبارت یاد شده با استفاده از قضیه بدیهی |YX| = |Y||X| اثبات می‌شود. جزئیات بیشتر در اعداد اصلی بیان شده‌است.

معمولاً از عبارت f: X Y برای بیان f [X Y] استفاده می‌شود، و «f تابعی از X به Y است» خوانده می‌شود. بعضی افراد هم آن را «f: X Y» می‌نویسند.

آیا یک تابع بیشتر از گرافش است؟

بعضی از ریاضی‌دانان از یک رابطه دوتایی (از اینجا به بعد آن را تابع می‌گوییم) به عنوان سه‌تایی مرتب (X, Y, G) استفاده می‌کنند، که در آن X و Y مجموعه دامنه و برد، و G گراف f است. اگر چه، سایر ریاضی‌دانان رابطه‌ای را تعریف می‌کنند که فقط شامل زوج‌های مجموعه G باشد، بدون این که دامنه‌ای برای آن تعیین کرده باشند.

در هر تعریف خوبی‌ها و بدی‌هایی وجود دارد، اما هر یک از آنها تعاریف مناسبی هستند که مورد استفاده در ریاضی قرار می‌گیرند. دامنه و برد موضوع مهمی است و باید به طور واضح مشخص باشند.

آشنایی با ماتریسها


آشنایی با ماتریسها

مقدمه: در تاریع آمده است که اولین بار یک ریاضیدان انگلیسی تبار به نام کیلی ماتریس را در ریاضیات وارد کرد. با توجه به آنکه در آن زمان ریاضیدانان اغلب به دنبال مسائل کاربردی بودند، کسی توجهی به آن نکرد. اما بعدها ریاضیدانان دنباله ی کار را گرفتند تا به امروز رسید که بدون اغراق می توان گفت در هر علمی به گونه ای با ماتریس ها سروکار دارند. یکی از نقش های اصلی ماتریس ها آن است که آنها ابزار اساسی محاسبات عملی ریاضیات امروز هستند، درست همان نقشی که سابقاً اعداد بر عهده داشتند. از این نظر می توان گفت نقش امروز ماتریس ها همانند نقش دیروز اعداد است. البته، ماتریس ها به معنایی اعداد و بردارها را در بر دارند، بنابراین می توان آنها را تعمیمی از اعداد و بردارها در نظر گرفت. در ریاضیات کاربردی ماتریس ها از ابزار روز مره هستند، زیرا ماتریس ها با حل دستگاه معادلات خطی ارتباط تنگاتنگی دارند و برای حل ریاضی مسائل عملی، مناسبترین تکنیک، فرمول بندی مسئله و یا تقریب زدن جوابهای مسئله با دستگاه معادلات خطی است که در نتیجه ماتریس ها وارد کار می شوند. اما، مشکلی اصلی در ریاضیات کابردی این است که ماتریس های ایجاد شده، بسیار بزرگ هستند و مسئله اصلی در آنجا کار کردن با ماتریس های بزرگ است. از جنبه نظری، فیزیک امروزی که فیزیک کوانتوم است، بدون ماتریس ها نمی توانست به وجود آید. هایزنبرگ اولین کسی که در فیزیک مفاهیم ماتریس ها را به کار برد- اعلام کرد «تنها ابزار ریاضی که من در مکانیک کوانتوم به آن احتیاج دارم ماتریس است.» بسیاری از جبرها مانند جبر اعداد مختلط و جبر بردارها را با ماتریس ها بسیار ساده می توان بیان کرد. بنابراین با مطالعه ماتریسها، در واقع یکی از مفیدترین و در عین حال جالبترین مباحث ریاضی مورد بررسی قرار می گیرد.

تعریف ماتریس: اگر بخواهیم مانند کیلی، ماتریس را تعریف کنیم، باید گفت هر جدول مستطیلی که دارای تعداد سطر و ستون است و در هر خانه آن یک عدد وجود دارد یک ماتریس است. به عبارت دیگر هر آرایشی از اعداد مانند مثالهای زیر را ماتریس می گویند.

اگر ماتـریس      را A بنامیـم، در این صورت ماتـریس ] 15و10 و 1-[ را سطـر اول و ] 19و7 و5[ را سطر دوم و ،     ،    را به ترتیب ستون اول، ستون دوم، ستون سوم A گویند. ماتریس A را که دارای دو سطر و ستون است یک ماتریس دو در سه (2و3) می گویند. اصطلاحاً می گوییم A از مرتبه 2 در 3 است. (نوشته می شود 3×2). بنابراین ماتریس ] 7و5 و12[ B= یک ماتریس 4×1 و ماتریس C یک ماتریس 3×3 است.

به اعداد یا اشیاء واقع در جدول ماتریس درایه های آن ماتریس می گویند. درایه های هر ماتریس در جا ومکان مشخصی قرار دارند. مثلاً در ماتریس  درایه 3 در سطر اول و ستون اول است. همچنین درایه سطر دوم، ستون سوم عدد 6 است. به طور کلی اگر درایه های سطر I ام ستون jام را با aij نشان دهیم؛ داریم

و 5=12a   2=22a       3=11a

به طور کلی یک ماتریس دلخواه 3×2 را بصورت زیر نمایش می دهیم:

اغلب برای سهولت، به جای نمایش ماتریس به صورت فوق، آن را با نماد 3*2[aij]نشان می دهند که در آن aij را درایه یا عنصر عمومی ماتریس 3*2[aij] گویند. به طور کلی برای ساختن انواعی از ماتریس های دیگر می توانیم به جای آن که درایه های ماتریس را از اعداد حقیقی انتخاب کنیم، درایه ها را از اعداد مختلط عناصر یک میدان، توابع و یاحتی ماتریس ها انتخاب کنیم.

در حالت کلی یک ماتریس m*n بصورت A=[aij]m*n عبارت است از:

 

ماتریس های مربع: اگر در یک ماتریس تعداد سطرها و ستون ها مساوی باشد، آن را ماتریس مربع گویند. در این حالت اگر یک ماتریس مانند A دارای مرتبه ی n*n باشد، گوییم A یک ماتریس مربع مرتبه n است. مجموعه ماتریس های مربع مرتبه ی n را با یا   نشان می دهند.

درایه های 11a و 22a و و anx یک ماتریس مربع مرتبه n باشد، مجموع درایه های قطر اصلی A را اثر ماتریس A می نامند و با نماد tr(A) نشان می دهند. بنابراین:

در واقع اثر ماتریس، تابعی از مجموعه ماتریسهای مربع در مجموعه اعداد حقیقی است، یعنی

مثال: اگر      درایه های قطر اصلی A عبارتند از 4- و 6- بنابراین

2=6+4-tr(A)

ماتریس سطری: ماتریس هایی را که فقط یک سطر دارند ماتریس سطری یا بردار سطری می نامند. مثلاً ماتریس ی ماتریس سطری *n1 است.

ماتریس ستونی: ماتریسی است که فقط دارای یک ستون باشد. هر ماتریس ستونی را بردار ستونی نیز می گویند. مثلاً ماتریس زیر یک ماتریس ستونی 1×m است.

ماتریس صفر: ماتریسی است که همه درایه هایش صفر باشد. بنابراین ماتریس   ماتریس صفر است. هرگاه:

ماتریس صفر از مرتبه m*n را با نماد Qm*n نشان می دهند.

مثال:

اگر مرتبه ماتریس صفر، داده شده باشد و یا از طریق متن، مرتبه آن معلوم باشد، در اینصورت برای سهولت ماتریس صفر را با و یا حتی با O نشان می دهند.

تساوی ماتریس ها: هرگاه در ریاضیات اشیا جدیدی معرفی شوند، باید مشخص شوند که چه وقت دوتای آنها با هم مساویند. مثلاً در مجموعه اعداد گویا دو عدد دو سوم و چهار ششم را، علیرغم اینکه یک شکل نیستند، مساوی می نامند. در مورد اعدادگ ویا، دو عدد     را مساوی می گویند. هر گاه ad=bc تساوی ماتریسها نیز به صورت زیر تعریف می شود.

تعریف: دو ماتریس و   مساویند هرگاه هم مرتبه باشند و درایه های نظیر در دو ماتریس (یعنی درایه های هم موضع) مساوی باشند. به عبارت دیگر، دو ماتریس    و   مساویند هر گاه داشته باشیم:

مثال:      و   تساوی A و B به این معناست که

جمع ماتریس ها: مجموع دو ماتریس   و   ماتریسی است که با نماد A+B نشان می دهیم و به صورت زیر تعریفق می شود.

توجه کنید که برای جمع دو ماتریس می بایست دو ماتریس هم مرتبه باشند. بنا به تعریف اگر A+B+C=[Cij] در اینصورت

برای این که تعریف فوق روشن تر شود، شکل گسترده آن را در حالت ماتریس های 2×2 در زیر می آوریم

تذکر: با توجه به تعریف، جمع دو ماتریس A+B وقتی تعریف شده که A و B هم مرتبه باشند. در این صورت A و B را ماتریس های قابل جمع می گویند.

تعبیر عمل جمع دو ماتریس به مثابه یک ماشین: عمل جمع را می توان به منزله ماشینی تصور کرد که دارای دو ورودی و یک خروجی است (مطابق شکل)، به طوری که اگر دوماتریس مثلا2×2 به آن بدهیم از خروجی آن یک ماتریس 2×2 بیرون می اید.

قرینه یک ماتریس: اگر A یک ماتریس m*n باشد، قرینه A ماتریسی است از همان مرتبه که با نماد –A نشان می دهند و اگر    در این صورت بنا به تعریف

مثال: قرینه ماتریس عبارت است از   و ملاحظه می شود که

خواص جمع ماتریس ها

الف) جمع ماتریسها خاصیت شرکت پذیری دراد

اثبات: فرض کنید   و   و   سه ماتریس هم مرتبه دلخواه باشند، نشان می دهیم

(A+B)+C=A+(B+C)

قبل از اثبات لازم است معنی عبارات (A+B)+C و A+(B+C) را بدانیم. در این مورد از تعبیر عمل جمع به مثابه عمل یک ماشین کمک می گیریم. از آنجا که ماشین جمع دو ورودی دارد نمی توان یکباره سه ماتریس را با هم جمع کرد، از این رو برای جمع سه   ماتریس A و B و C می توان ابتدا A و B را به ماشین داده و A+B را به دست آورد. سپس A+B و C را به ماشین می دهیم تا (A+B)+Cبه دست آید.

عبارت A+(B+C) به این معناست که نخست B و C را وارد ماشین کرده ایم و B+C را به دست آورده ایم و سپس (B+C)+A را بیرون می دهد.

حال می خواهیم نشان دهیم که در هر صورت ماتریس های بدست آمده مساویند برای این کار قرار می دهیم

درایه سطر I ام ماتریس =D+C درایه سطر I ام ستون j ام ماتریس (A+B)+C

ب) ماتریس صفر عضو بی اثر مجموعه ماتریس ها نسبت به عمل جمع است.

اثبات: فرض کنید   یک ماتریس دلخواه باشد، نشان می دهیم.

که در آن ماتریس صفر هم مرتبه با A است.

اثبات مشابه اثبات فوق است.

ج) هر ماتریس نسبت به عمل جمع دارای متقابل است.

دیدیم که قریبنه هر ماتریس A=[aij]، ماتریسی هم مرتبه با آن به صورت –A[-aij] است. در واقع –A متقابل A نسبت به عمل جمع است، زیرا قبلاً نشان دادیم

که در آن ماتریس صفر هم مرتبه با A است.

د) جمع ماتریس ها دارای خاصیت جابه جایی است.

یعنی اگر A و B دو ماتریس دلخواه هم مرتبه باشند، داریم    A+B=B+A

اثبات:

تعریف ماتریس ها: فرض کنید A و B دو ماتریس هم مرتبه باشند، A-B به صورت زیر تعریف می شود

A-B=A+(-B)

از تعریف فوق نتیجه می گیریم برای اینکه با ماشین جمع، A-B را به دست آوریم، نخست ماشینی با یک ورودی و یک خروجی می سازیم تا هر ماتریسی به آن دهیم آن ماتریس را قرینه کند. حال با دادن ماتریس B به این ماشین، -B از آن خارج می شود.

سپس، A و –B را به ماشین جمع می دهیم تا A+(-B) یعنی A-B را بیرون دهد.

مقایسه خواص جمع ماتریس ها با خواص جمع اعداد حقیقی:

اگر به خواص ماتریس ها توجه کنیم ملاحظه می کنیم که این خواص همانند خواص جمع اعداد حقیقی است، حال می خواهیم ببینیم کدامیکی از خواص دیگر مجموعه اعداد حقیقی با عمل جمع در مجموعة ماتریس ها با عمل جمع برقرار است. می دانیم برای حل معادله a+x=b در مجموعه اعداد حقیقی باید به طریقی a را از طرف اول معادله حذف کرد. بنابراین، طرفین معادله را با –a جمع می کنیم، در اینصورت:

(-a)+ (a+x)=-a+b

با استفاده از خاصیت جابجایی و شرکت پذیری جمع داریم:

(-a+a) +x=b-a)

در نتیجه +x=b-a0 یعنی x=b-a0 این شیوه را می توان برای حل معادله A+X=B در مجموعه ی ماتریس ها نیز به کار برد و گزاره زیر را به دست آورد.

گزاره: اگر A و B دو ماتریس هم مرتبه باشند، در این صورت معادله A+X=B دارای جواب منحصر به فرد X=A-B است.

یکی دیگر از خواص مجموعه اعداد حقیق با عمل جمع، قانون حذف است. یعنی اگر a+x=a+y در این صورت می توان نتیجه گرفت x=y این خاصیت نیز در مورد ماتریس ها با عمل جمع وجود دارد.

قانون حذف در جمع ماتریس ها برقرار است

اثبات: روش اول، فرض کنید A و B و C سه ماتریس هم مرتبه باشند، نشان می دهیم

A+B=A+Cà B=C

طرفین تساوی A+B=A+C را با –A جمع می کنیم با توجه با خاصیت شرکت پذیری و خاصیت ماتریس صفر نتیجه می شود B=C

روش دوم: چون A+B=A+C پس

درایه iام ستون jام =A+C درایه سطر iام ستون jام A+B

تذکر: برای اثبات قانون حرف دو روش مختلف ارائه دادیم. در روش اول، از خواص جمع ماتریسها یعنی شرکت پذیری، عضو بی اثر و استفاده کردیم، یعنی همان روشی که برای اعداد حقیقی می توان به کار برد. اما در روش دوم ویژگی های ماتریس نقش اصلی را ایفا می کند. در واقع در مورد روش اول برای ما مهم نیست A و B و C ماتریس هستند یا عدد حقیقی و یا هر چیز دیگر، در مورد هر دسته ای از اشیا که دارای خواص جمع ماتریس ها باشند، می توانیم این شیوه را به کار ببریم و این همان رسالت جبر مدرن است که با اصل موضوعی کردن، قضایای مشابه را به یکباره ثابت می کند. زیرا شیوه و روش اثبات قضیه در هر جایی که این اصول صدق می کنند، معتبر است.

ضرب یک عدد (اسکالر) در ماتریس

تعریف: فرض کنید   ماتریسی از مرتبه m*n و r یک عدد حقیقی باشد. از ضرب عدد حقیقی r در A ماتریسی به دست می آید که آن را به صورت rA نمایش می دهیم و به صورت زیر تعریف می شود.

بنابراین (درایه سطر iام ستون jام ماتریس =r.(A درایه سطر iام ستون j ام ماتریس (rA)

مثال: اگر در این صورت

خواص ضرب عدد در ماتریس:

1)فرض کنید r و s دو عدد حقیقی و A یک ماتریس m*n باشد در این صورت داریم

r(sA)=(rs)A

2)اگر r و s دو عدد حقیقی و A یک ماتریس m*n باشد در این صورت داریم

(r+s)A=rA+sA

3)اگر r یک عدد حقیقی و A و B دو ماتریس m*nباشند در این صورت

r(A+B)=rA+rB

4)اگر r یک عدد حقیقی ناصفر و A وB دو ماتریس دلخواه m*n باشند در این صورت

rA=rBà A=B

ضرب ماتریس ها و خواص آن

ضرب ماتریس سطری در ماتریس ستونی

تعریف: ماتریس سطری    و ماتریس ستونی

را در نظر می گیریم حاصل ضرب A در B به صورت زیر تعریف می شود.

با توجه به تعریف فوق حاصل ضرب یک ماتریس سطری در ماتریس ستونی یک عدد حقیقی است که برای به دست آوردن آن به صورت زیر عمل می کنیم.

مثال:

ضرب ماتریس ها در حالت کلی:

تعریف: اگر     و   دو ماتریس مخصوص باشند در این صورت حاصل ضرب AB ماتریسی است m*p که اگر آن را با C نشان دهیم داریم

ملاحظاتی در مورد ضرب دو ماتریس

1-ضرب ماتریسی AB در صورتی تعریف شده است که تعداد ستون های ماتریس اولی، یعنی A با تعداد سطرهای ماتریس دومی، یعنی B، برابر باشد. در این صورت گویند ماتریس A در ماتریس B قابل ضرب است.

2-اگر AB=C برای به دست آوردن هر یک از درایه های ماتریس C به نمحلی که درایه واقع است توجه می کنیم. مثلاً برای بدست آوردن 12C سطر اول A را در ستون دوم B، طبق ضرب یک ماتریس سطری در ماتریس ستونی ضرب می کنیم، و به همین ترتیب

ستون پنجم ماتریس B× سطر سوم ماتریس A = 35C

اگر 1R و 2R و 3R به ترتیب نمایشگر سطر اول و سطر دوم و سوم ماتریس 2×3A و 1C و 2C و 3C نمایشگر ستون اول ، دوم و سوم ماتریس 3×2B باشند. در این صورت AB ماتریسی 2×2 به صورت زیر است.

که در آن، برای مثال، 2C1R حاصل ضرب سطر اول A در ستون دوم B را نشان می دهد.

ماتریس واحد (همانی)

ماتریس واحد، ماتریس مربعی است که تمام درایه های قطر اصلی آن 1 و سایر درایه های صفر است.برای مثال ماتریس واحد 2×2 که با نماد 2I نمایش می دهیم به عبارت است از

به همین ترتیب ماتریس واحد 3×3 عبارت است از

تذکر: ماتریس I را از اینرو، واحد گویند که رفتاری شبیه عدد 1 در ضرب اعداد دارد و چون روی هر ماتریسی (قابل ضرب با آن) اثر کند همان ماتریس را می دهد بنابراین آن را ماتریس همانی نیز می گویند.

گزاره: اگر در ماتریس A سطر دوم صفر باشد و B ماتریسی باشد که AB تعریف شده باشد، در این صورت سطر دوم AB نیز صفر است.

اثبات: قرار می دهیم AB=C درایه های سطر دوم AB از ضرب سطر دوم A در ستون های B به دست می آید. فرض کنید Cijدرایه دلخواهی از سطر دوم AB باشد، بنابراین

به طور کلی، اگر در ماتریس A سطر iام صفر باشد در این صورت سطر I ام ماتریس AB صفر است. به طریق مشابه می توان ثابت کرد.

گزاره: اگر در ماتریس B ستون jام صفر باشد و A ماتریسی باشد که AB تعریف شده باشد، در این صورت ستون jام ماتریس AB صفر است.

بررسی خاصیت جابه جایی در ضرب ماتریسها:

دو ماتریس A و B مفروضند. AB وقتی تعریف شده است که تعداد ستونهای A با تعداد سطرهای B مساوی باشد. مثلاً داشته باشیم و    اگر m و p مساوی نباشد، BA تعریف نشده است. برای اینکه BA تعریف شده باشد لازم است که p=m، یعنی B ماتریس n*m باشد. در اینصورت AB از مرتبه m*m و BA ماتریسی است از مرتبه n*m. حال اگر بخواهیم AB و BA هر دو موجود و هم مرتبه باشند می بایست A و B هر دو ماتریس های مربع و هم مرتبه باشند. اما در این حالت نیز ممکن است BA و AB مساوی نباشد. به مثال زیر توجه کنید.

مثال: اگر         در اینصورت

ملاحظه می شود که AB و BA مساوی نیستند. مثال فوق بیانگر آن است که ضرب ماتریس ها دارای خاصیت جابه جایی نیست. حال به مثال زیر توجه کنید.

مثال: اگر      در این صورت

یعنی AB=BA

ماتریس های تعویض پذیر:

تعریف: اگر A و B دو ماتریس مربع باشند به طوری که AB=BA در این صورت A و B را تعویض پذیر گوییم و یا گوییم A و B با یکدیگر جابجا می شوند.

مثال: دو ماتریس   و   تعویض پذیرند. زیرا

یک خاصیت غیر منتظره در ماتریسها:

می دانیم که مجموعه اعداد حقیقی دارای این خاصیت است که : «حاصلضرب دو عدد حقیقی ناصفر، عددی حقیقی ناصفر است.»

اما در مورد ماتریسها چنین نیست. به مثال زیر توجه کنید. دو ماتریس غیر صفر را در نظر بگیرید. داریم:

ملاحظه می شود که ماتریس هایی مانند A و B وجود دارند به طوری که و   ولی این نوع ماتریس ها را مقسوم علیه صفر می گویند.

تعریف: فرض کنید A یک ماتریس مربع باشد. اگر ماتریس ناصفری مانند B بتوان یافت به طوری    یا در این صورت A را مقسوم علیه صفر گویند.

مثال: ماتریس   مقسوم علیه صفر است زیرا

توانهای طبیعی یک ماتریس مربع:

فرض کنید A یک ماتریس m*n باشد. برای آنکه AA وجود داشته باشد می بایست m=n ، یعنی در صورتی AA تعریف شده است که A ماتریسی مربع باشد. در این صورت AA را با 2A نمایش می دهند.

تعریف: اگر A یک ماتریس مربع باشد، در این صورت توان های طبیعی A به صورت زیر تعریف می شوند

=A1A و =AA2A و 2=AA3A وبا استقرا

An+1 = AAn

در صورتی که A یک ماتریس مربع مرتبه n باشد توان صفر A نیز به صورت زیر تعریف می وشد.

که در آن In ماتریس واحد مرتبه n است.

ماتریس های بالا مثلثی

ماتریس مربعی   را بال مثلثی می نامند هرگاه

Aij      I>j     à aij=0

یعنی، در یک ماتریس بالا مثلثی کلیه درایه های واقع در پایین قطر اصلی صفرند. برای مثال یک ماتریس بالا مثلثی 3×3 در حالت کلی به صورت زیر است

این ماتریس ها را به صورت زیر نشان می دهند

همانطور که از نامگذاری این نوع ماتریس ها معلوم است، در هر ماتریس بالا مثلثی، درایه های واقع بر قطر اصلی و بالای قطر اولی مشخص کننده ماتریس هستند. زیرا تمام درایه های پایین قطر اصلی صفرند.

مثال: ماتریس مربع و صفر ماتریس واحد، بالا مثلث اند.

ماتریس های پایین مثلثی

ماتریس مربع A=[aij] را پایین مثلثی نامند هرگاه

یعنی،  در یک ماتریس پایین مثلثی، همه درایه های واقع در بالای قطر اصلی، صفرند.

مثال: ماتریس روبه رو یک ماتریس

پایین مثلثی 3×3 است. گاهی برای سهولت این ماتریس را به صورت زیر هم نشان می دهند.

نماد O در بالای قطر اصلی به معنای آن است که تمام درایه های بالای قطر اصلی صفرند. نامگذاری این نوع ماتریس ها همانند قبل، بر این اساس استوار است که در ماتریس های پایین مثلثی درایه های واقع بر قطر اصلی ، مشخص کننده ماتریس هتسند.

مثال: ماتریس مربع صفر و ماتریس واحد پایین مثلثی نیز هستند.

ماتریس های قطری:

ماتریع مربع D=[dij] را قطری می نامند، هر گاه هم بالا مثلثی و هم پایین مثلثی باشد، یعنی در یک ماتریس قطری، درایه های پایین و بالای قطر اصلی همگی صفرند، به عبارت دیگر، D قری است هرگاه

بنابراین، ماتریس قطری D به صورت زیر نوشته می شود.

برای سهولت این ماتریس را به صورت زیر هم نشان می دهند.

همانطور که از نام این نوع ماتریس ها بر می آید، در یک ماتریس قطری فقط درایه های واقع بر قطر اصلی مشخص کننده ماتریس اند، برای همین ماتریس قطری را به صورت

diaj(d11 , d12 , dnn)

نیز نشان می دهند.

مثال: ماتریس   قطری است که به صورت(2- و 3 و2) D=diag  نیز می توانیم آن را بنویسیم.

ماتریس واحد (همانی)

ماتریس واحد، ماتریس اسکالری (آن دسته از ماتریس های قطری را که همه درایه های واقع بر قطر اصلی آنها مساویند، ماتریس اسکالر نامند) است که درایه های واقع بر قطر اصلی آن همگی مساوی 1 است. ماتریس واحد مرتبه n را با In نشان می دهند.

مثال: ماتریس واحد 3×3 عبارت است از

وقتی مرتبه ماتریس واحد معلوم باشد و یا اهمیت نداشته باشد، ماتریس واحد را با I نشان می دهند و برای هر ماتریس مرتبه n مانند A داریم     InA=AIn=A

یعنی، ماتریس واحد، عضو بی اثر مجموعه ماتریس های مربع نسبت به عمل ضرب است. برای همینن ماتریس واحد رفتاری شبیه عدد یک در ضرب اعداد دارد.

و به سادگی دیده می شود که برای هر عدد طبیعی K داریم:       IK=I

مثال: هر ماتریس اسکالر مضربی از ماتریس واحد است. یعنی؛

ماتریس های خود توان

ماتریس مربع A را خودتوان می نامند هرگاه =A2A

 مثال: ماتریس  خودتوان است زیرا؛

گزاره: اگر A خودتوان باشد، در این صورت برای هر عدد طبیعی n، داریم:

An=A

ماتریس های پوچ توان:

ماتریس مربع A را پوچ توان نامند هرگاه به ازای یک عدد طبیعی، مانند n، داشته باشیم

بدیهی است که اگر  به ازای هر عدد طبیعی بزرگتر از n مانند m داریم

کوچکترین این n ها را اندیس پوچ توانی A گویند.

زیرماتریس ها وافراز کردن

یک زیر ماتریس یک ماتریس مفروض A ماتریسی است که از حذف تعدادی از سطرها یا ستون های ماتریس A بدست آمده باشد، برای مثال اگر

در این صورت هر یک از ماتریسهای زیر یک زیر ماتریس A می باشند.

زیر ماتریس     از حذف سطرهای اول و دوم و ستونهای اول و سوم، و زیر ماتریس ]4   3  2 [ از حذف سطرهای دوم و سوم و چهارم و ستون اول به دست می آیند.

هرگاه با ترسیم خطوط افقی و عمودی بین سطرها و ستونهای یک ماتریس آن را تقسیم بندی کنیم، گوییم ماتریس را افراز کرده ایم. با تغییر این خطوط افرازهای متفاوتی از یک ماتریس ساخته می شود. مثلاً

دو افراز مختلف از ماتریس A می باشند.

وقتی ماتریس ها از ظرفیت حافظه کامپیوتر بزرگترند، از ماتریس های افراز شده استفاده فراوان می کنند. مثلاً در ضرب دو ماتریس افراز شده، می توان ماتریس ها را روی دیسک نگه داشت. و فقط زیر ماتریس هایی را که در تشکیل حاصل ضربهای زیر ماتریسی لازمند در حافظه آورد. معلوم است که افراز باید به قسمی صورت گیرد که حاصل ضرب ماتریسهای نظیر قابل تعریف باشد.

فرض کنید A و B ماتریسیهایی باشند که AB تعریف شده باشد حال اگر A و B را به صورت

افزار کرده باشیم در این صورت به آسانی ثابت می شودکه برای محاسبه ماتریس AB می توان C و D و را شبیه درایه ها تصور کرد و عمل ضرب را انجام داد، بنابراین

البته، این مشروط به آن است که افراز به گونه ای باشد که حاصل ضرب های فوق تعریف شده باشد.

ترانهاده یک ماتریس

تعریف: فرض کنید A یک ماتریس m*n باشد، ترانهاده A، ماتریسی است n*m که سطر اول آن ماتریس A سطر دوم آن ستون دوم A و به طور کلی، سطر iام ترانهاده A ستون iام ماتریس A می باشد. ترانهاده A را با نمادها َA و At یا tA نمایش می دهند.

مثال: فرض کنید

در این صورت ترانهاده A، یعنی َA عبارت است از

ملاحظه می شود که درایه سطر اول ستون دوم ماتریس A مساوی 5 است، یعنی 5=12a از طرف دیگر اگر درایه های َA را با ijَa نشان دهیم درایه سطر دوم ستون اول َA نیز مساوی 5 است.

یعنی5=12a بنابراین     12a= 21َa

به طریق مشابه     13a= 31َa    32a= 23َa

در واقع اگر    در این صورت ترانهاده A عبارت است از  که در آن

aij=aij

بنابراین درایه سطر jام ستون iتک A= درایه سطر iام ستون jام َA

مثال: ترانهاده یک ماتریس بالا مثلثی ، یک ماتریس پایین مثلثی است و بر عکس.

مثال: ترانهاده ماتریس واحد مرتبه n خود ماتریس واحد مرتبه n است، یعنی II

ویژگی های ترانهاده

قضیه: اگر A یک ماتریس m*n باشد در این صورت A=َ(َ(A

قضیه: اگر A و B دو ماتریس m*n باشند، در این صورت َBA = َ((A+B

قضیه: اگر A یک ماتریس m*n و یک عدد حقیقی باشد، در این صورت

ماتریس متقارن

تعریف: ماتریس مربع A را متقارن می نامند، هرگاه AA

مثال: ماتریس   متقارن است

زیرا

از تساوی AA نتجیه می شود    aij=ijَa

و در نتیجه        aij=aji

 بنابراین در ماتریس های متقارن درایه هایی که موضع آنها نسبت به قطر اصلی قرینه اند با هم مساویند.

مثال: هر ماتریس قطری متقارن استن در نتیجه ماتریسهای اسکالر و ماتریس واحد و ماتریس صفر متقارن هستند.

قضیه: اگر A و B دو ماتریس متقارن هم مرتبه باشند، در این صورت A+B نیز متقارن است.

اثبات: چون A و B متقارن است پس AA  و BB بنابراین

َBA = َ((A+B

قضیه: اگر A متقارن و یک عدد حقیقی باشد، در این صورت نیز متقارن است

اثبات:

قضیه: اگر A و B  دو ماتریس متقارن و تعویض پذیر باشند، در این صورت AB نیز متقارن است.

اثبات:

دتریمنال یک ماتریس:

به هر ماتریس مربع، عددی نسبت داده می شود که دترمینال آن ماتریس نامیده می شود. دترمینان یک ماتریس مانند مشتق یک تابع، اطلاعاتی در مورد آن ماتریس در اختیار می گذارد. برای مثال با استفاده از دترمینان می توان دریافت که یک ماتریس وارون دارد یا خیر؟ و اینکه در حل دستگاههای n  معادله n مجهولی می توان از دترمینان استفاده کرد.

دترمینان ماتریس های 1x1

فرض کنید   یک ماتریس  باشد، دترمینان این ماتریس که با نماد det[a] نشان داده می شود عبارت است از      det[a]=a

دترمینان ماتریسهای 2×2

ماتریس را در نظر می گیریم دترمینان A که با هر یک از نمادهای نشان می دهند، به صورت زیر تعریف می شود.

مثال:

برای تعریف دترمینان یک ماتریس n*n لازم است قبل از آن مفاهیم کهاد و همسازه را بدانیم.

کهاد (مینور)

تعریف: فرض کنید A=[aij] ماتریسی n*n باشد. ماتریسی را که از حذف سطر iام ستون jام ماتریس A بدست می آید با Mij نشان می دهیم. دترمینان Mij یعنی را کهاد یا مینور aij می نامند.

تعریف: فرض کنید A=[aij] ماتریسی n*n باشد، همسازه    از زاویه aij به صورت زیر تعریف می شود.

تذکر: i+j (1-) در هر حالت مقادیر 1 یا 1- را می گیرد، در واقع

مثال: فرض کنید

در این صورت ماتریس حاصل از حذف سطر اول ستون دوم =A 12M

تعریف دتریمنان ماتریس های n*n

تعریف: فرض کنید A[aij] ماتریسی n*n باشد (n>2) در این صورت دترمینان A به صورت زیر تعریف می شود.

با کمی دقت در فرمول بالا مشاهده می شودکه در محاسبه دترمینان A فقط از درایه های سطر اول و کهاد آنها استفاده شده است. این فرمول را در مورد هر سطر دلخواه دیگر هم می توانیم بنویسیم. مثلاً فرمول بالا برای سطر iام به شکل زیر است

ثابت می شود که مقدار بالا بستگی به iندارد و همان مقدار به دست می آید. فرمول بالا را بسط دترمینان نسبت به سطر iام می نامند  و در محاسبه دترمینان نسبت به هر سطری که بسط داده شود، حاصل همواره یکی است.

همچنین در فرمول بسط دترمینان به جای استفاده از سطرهای ماتریس می توانیم از ستون های ماتریس استفاده کنیم و به فرمول زیر که بسط دترمینان نسبت به ستون jام نام دارد، برسیم.

در این مورد نیز ثابت می شودکه مقدار بالا بستگی به j ندارد و همان است.

مثال: مطلوب است محاسبه دترمینان A که A به صورت زیر است.

حل: دترمینان را نسبت به سطر اول بسط می دهیم.

وارون یک ماتریس

برای حل معادلات به صورت ax=b در مجموعه اعداد حقیقی، باید کاری کرد که ضریب x برابر 1 شود. برای این کار باید طرفین را در وارون a یعنی ضرب کرد در نتیجه

البته، روشن است که این معادله را وقتی می توان به این صورت حل کرد که نظیر این معادلات در ماتریس ها نیز مطرح است، یعنی معادلات به صورت AX=C

که در آن A و C ماتریسهای مربع هستند، همانند اعداد راحت ترین کار برای حل این نوع معادلات از میان برداشتن A است، بعبارت دیگر طرفین معادله را می بایست از سمت چپ در ماتریسی ضرب کنیم که A را خنثی کند. منظور از خنثی کردن A آن است که ماتریسی مانند B بدست آوریم به طوری که BA=I در این صورت B را وارون A و یا به عبارت دقیقتر وارون چپ A گویند.

تعریف: فرض کنید A ماتریس n*n باشد. اگر ماتریسی مانند B وجود داشته باشد، به طوری که در آن I ماتریس واحد مرتبه n است، ماتریس B را یک وارون A گویند. در این صورت می گویند A وارون پذیر یا غیر منفرد (ناتکین) است

مثال: نشان دهید ماتریس وارون پذیر است.

حل: با توجه به تعریف باید ماتریسی 2×2 مانند B ارائه دهیم به طوری که

AB=BA=I

برای این کار فرض کنید

بنابراین

از حل دستگاه فوق نتیجه می شود که

بنابراین

به سادگی می توان دید که

بنابراین ماتریس   وارون  است در نتیجه A وارون پذیر است.

قضیه: وارون یک ماتریس در صورت وجود منحصر به فرد است.

اثبات: فرض کنید A دارای دو وارون َA و ًA باشد، نشان می دهیمَA = ًA

I ماتریس واحد است      َIAA

ًA A)َ=(A

(AAَA=

IَA=

َA

قرارداد: اگر A یک ماتریس مربع وارون پذیر باشد، در این صورت وارون A را با 1- A نشان می دهند. بنابراین

A=I1-A= 1-AA

قضیه: فرض کنید

و در این صورت A وارون پذیر است و

اثبات: در معادله صدق می کند

یعنی

پس A وارون پذیر است، و همچنین

 

اصل لانه کبوتر

چکیده:

اصل لانه کبوتر بسیار روشن است و بسیار ساده به نظر می‌رسد، گویی دارای اهمیت زیادی نیست، ولی در عمل این اصل دارای اهمیت و قدرت بسیار زیادی است، زیرا تعمیمهای آن حاوی نتایجی عمیق در نظریه ترکیباتی و نظریه اعداد است. وقتی می‌گوئیم در هر گروه سه نفری از مردم حداقل دو نفر، هم جنس‌اند در واقع اصل لانه کبوتر را به کار گرفته‌ایم. فرض کنیم به تازگی در دانشکده‌ای، یک گروه علوم کامپیوتر تاسیس یافته که برای 10 عضو هیئت علمی آن فقط 9 دفتر‌کار موجود باشد. آن‌گاه باز هم ایده نهایی در پشت این ادعای بدیهی که حداقل از یک دفتر‌کار بیشتر از یک نفر است استفاده می‌کنند، اصل لانه کبوتر است. اگر به جای 10 نفر 19 عضو هیئت علمی وجود داشته باشد، آن‌گاه حداقل از یک دفتر‌کار بیشتر از دو نفر استفاده می‌کنند. همین‌طور، اگر در دانشکده‌ای حداقل 367 دانشجو وجود داشته باشند، باز آشکار است S حداقل دو نفر از آنها روز تولدشان یکی است. می‌گویند که سرانسان دارای حداکثر 999 و 99 تار مو است. از این رو در شهری S جمعیت آن بیشتر از 4 میلیون باشد، حداقل 41 نفر وجود دارند که تعداد موهای سرشان یکی است (سر طاس مو ندارد). مثالهای زیادی نظیر این را می‌توانیم نقل کنیم.

ایده اساسی حاکم بر همه‌ی این موارد حقیقت ساده‌ای مشهور به اصل لانه‌کبوتر دیر بلکه است.

که عبارت است از:

فرض کنید ‌k و n دو عدد طبیعی‌اند. اگر بخواهیم بیشتر از nk+1 شی را در n جعبه قرار دهیم، حداقل یک جعبه وجود دارد که در آن حداقل k+1 شی قرار گرفته باشد. در حالت خاص، اگر حداقل n+1 شی را در n جعبه قرار دهیم، جعبه‌ای وجود دارد که در آن حداقل دو شی قرار گرفته باشد.

1.هفده نفر در جلسه‌ای حضور دارند. آنها درباره سه موضوع بحث می‌کنند، هر دو نفر آنها درباره یک و فقط یک موضوع بحث می‌کنند. ثابت کنید یک گروه حداقل سه نفری وجود دارد که افراد آن با هم راجع به یک موضوع بحث کرده باشند.

حل: می‌توانیم 17 نفر را 17 نقطه در نظر بگیریم که هر دوتایی به توسط یک بال به هم وصل شده‌اند. بالی را که X و Y را به هم متصل می‌کند، آبی می‌کنیم اگر آن دو درباره موضوع (1) بحث کرده باشند و قرمز می‌کنیم اگر راجع به موضوع (2) بحث کرده باشند و به رنگ زرد در می‌آوریم. اگر آن دو درباره موضوع (3) با هم به بحث پرداخته باشند. بنابراین هر کدام از 16 بالی که از A گذشته‌اند با یکی از سه‌رنگ آبی،‌ قرمز یا زرد رنگ شده است. از آن‌جایی که 1+3×5=16، طبق اصل لانه کبوتری حداقل 1+5 رأس یافت می‌شود، که با یک رنگ به A متصل شده باشند. بدون اینکه به کلیت مساله لطمه بخورد فرض می‌‌‌کنیم یال‌‌های AG,AF,AE,AD,AC,AB با رنگ آبی، رنگ‌آمیزی شده باشند. حال 6 رأس G,F,E,D,C,B را در نظر بگیرید که با 15 یال به هم متصل شده‌اند. اگر هر کدام از این یال‌ها (مثلاً BC) به رنگ آبی باشد. آن‌گاه این یال‌ها با رنگ‌های قرمز یا زرد خواهیم داشت. و این به این معنی است که حداقل سه نفر وجود دارند که با هم راجع به یک موضوع بحث کرده باشند.

2.فرض کنیم {n2 و ...و 3و2و1}=X و فرض نمائیم S زیر مجموعه‌ای (1+n) عنصری از x باشد. آن‌گاه حداقل دو عدد در S وجود دارند به طوری که یکی دیگری را می‌شمارد.

اثبات: هر عدد دلخواه r متعلق به S را می‌توان به صورتS .2t= r نمایش داد که در آن،T یک عدد صحیح نامنفی و S عدد فرد متعلق به X، به نام قسمت فرد (r) است. برای S حداکثر n انتخاب وجود دارد، زیرا n عدد فرد در X وجود دارد. این n قسمت فرد را می‌توان به عنوان n لانه کبوتر در نظر گرفت که قرار است (1+n) عدد متعلق به S را بین این لانه‌ها پخش کنیم. به عبارت دیگر، دو عدد مانند x و y در s وجود دارند که قسمت فرد آنها یکی است. فرض کنیم s.2t=x و.2u.s=y آن‌گاه یا x عدد y را می‌شمارد یا برعکس.

3.اکبر در طول تعطیل چهار‌هفته‌ای خود هر روز حداقل یک دور تنیس بازی می‌کند. ولی در طی این مدت جمعاً بیش از 40 دور بازی نخواهد کرد. ثابت کنید که توزیع دفعات دورهای بازی او در طی چهارهفته هر چه باشد، تعدادی از روزهای متوالی وجود دارد که طی آنها دقیقاً 15 دور بازی می‌کند؟

حل:

برای ، فرض کنید xi، تعداد کل دورهایی باشد که اکبر از آغاز تعطیلات تا پایان روز I بازی کرده است. پس:

  و 

 

اینک 28 عدد متمایز x1 و x2 و... و x28 عدد متمایز 15+x1 ،15+x2 ،....،15+x28 داریم.

این 56 عدد می‌توانند تنها 55 مقدار مختلف اختیار کنند، بنابراین حداقل دو تا از آنها باید مساوی بوده و نتیجه می‌گیریم که رابطه  باشرط 15+x=xi وجود دارد. لذا از شروع (1+j)ام تا آخر روز I اکبر دقیقاً‌ 15 دور بازی خواهد کرد.

4.کیسه‌ای حاوی دقیقاً 5 مهره قرمز،8 مهره آبی، 10 مهره سفید و 12 مهره سبز و 7 مهره زرد است. مطلوب است تعیین تعداد مهره‌هایی که باید انتخاب شوند تا مطمئن شویم که:

الف)‌ حداقل 4 مهره همرنگ‌اند

ب) حداقل 7 مهره همرنگ‌اند

پ) حداقل 6 مهره همرنگ‌اند

ت) حداقل 9 مهره همرنگ‌اند

 

 

حل:

 5 رنگ داخل کیسه وجود دارد. لذا 5 لانه کبوتر داریم:












قرمز

 

آبی

 

سفید

 

سبز

 

زرد

 
 

 

 


ج الف) 16

ب) 30=1+4×6+5

پ) 26=1+4×5+5

ت) 37=1+2×8+7+8+5

5.10 عدد طبیعی متمایز و کوچکتر از 107 مفروضند. نشان دهید که دو زیرمجموعه مجزا و غیرخالی این 10 عدد یافت می‌شود S مجموع اعضایشان یکسان است.

حل:

بزرگترین 10 عددی که می‌توانیم داشته باشیم 97، 98،....106 هستند که مجموع آنها 1015 هست. بنابراین کافی است 1015 لانه کبوتر با شماره‌های 1 و2 و ...و 1015 را در نظر بگیریم. هر مجموعه 10 عضو شامل 1023=1-210 زیر‌مجموعه زیرتهی است، که 1023 را تعداد کبوترها در نظر می‌گیریم. لذا بنا به اصل لانه کبوتری، حداقل 2 زیرمجموعه با مجموع یکسان وجود دارند. اعداد متناظر را از 2 مجموعه حذف می‌کنیم.

6.فرض کنیم  فرد باشد. ثابت کنید که عدد صحیح مثبتی مانند n وجود دارد به طوری که m عدد 1-2n را عادی می‌کند؟

حل: 1+m عد صحیح مثبت 1-21، 1-22، 1-23، ....، 1-2m، 1-2m+1 را در نظر می‌گیریم.

بنابراین اصل لانه کبوتر و الگوریتم تقسیم، اعدادی مانند  وجود دارند به طوری که   

9= تعداد روز چهارم + روز پنجم

لذا حداقل دنباله‌ای از دو روز متوالی چهارم و پنجم یافت شد که مجموع ساعاتی که دونده در آنها دویده 9 ساعت شود.

7.فرض کنید{a5 و .....a2 وa1}=A مجموعه‌ای از 5 عدد صحیح و مثبت باشد. نشان دهید که برای هر جایگشت مانند{ai5 و...وai1}=B از مجموعه A حاصل ضرب

(ai1-a1) (ai2-a2)…(ai5-a5)

عددی زوج است.

 

 

حل:

 ضرب n عدد زوج است، هرگاه حداقل یکی از اعداد زوج باشد، بنابراین یکی از (aij-aj) عدد زوج است. یعنی aj و aij یا هردو زوج‌اند و یا هردو فردند. طبق اصل لانه کبوتری، حداقل 3 عضو از مجموعه A دارای زوجیت یکسان هستند.

به عنوان مثال، a1 و a2 و a3 از مجموعه A را در نظر می‌گیریم که هر سه فردند یا زوج. لذا روشن است که Q{a13 و a12 و a11}  {a3 و a2 و a1} (زیرا مجموعه A بایست حداقل دارای 6 عضو {a13,a12,ali,a3,a2,a1} باشد). به عبارتی دیگر مجموعه {a1,a2,a3,a11,a12,a13}=c حداقل دو عضو برابر دارد. فرض کنید a11= a3. بنابراین a1-a3=a1-a11 در نتیجه a1-a11 عددی زوج است.

8.برای تمام اعداد طبیعی  و p ثابت کنید R+ R  (p,q) R .

اثبات:

 فرض کنیم . طبق قضیه رمزی (برای تمام اعداد طبیعی2 q و p، عدد R(p.q) با شرط ذکر شده، وجود دارد.) و برای اثبات قضیه کافی است که نشان دهیم که اگر دسته نقطه‌ی nتایی را با دو رنگ قرمز و آبی رنگ کنیم، آن‌گاه یک دسته‌ی نقطه‌ای pتایی با یک دسته نقطه‌ی qتایی قرمز وجود دارد. سه نقطه‌‌ی nتایی را با kn نشان می‌دهیم.

یک رأس ثابت V در Kn را در نظر بگیرید. از v، 1-n یال در kn عبور کرده است:

طبق تعمیم یافته اصل لانه کبوتری R(P-1,q) یال گذرنده از v وجود دارد که با آبی رنگ شده‌اند یا R(P,q-1) گذرنده v وجود دارند که با قرمز رنگ شده‌اند. فرض می‌کنیم حالت اول درست باشد. فرض کنید x مجموعه نقاطی باشد که این R(P,q-1) به v وصل شده‌اند. از آن‌جا که  طبق تعریف مجموعه‌ی x شامل یک دسته‌ی نقطه (p-1)تایی آبی باشد، آن‌گاه مجموعه {v} x یک دسته نقطه qتایی آبی است.

9.6 مهره قرمز، 5 مهره سفید و 7 مهره آبی در یک کیسه داریم. مطلوب است تعیین کمترین تعداد  مهره‌هایی که باید انتخاب شوند تا مطمئن شویم S حداقل 3 مهره قرمز یا حداقل 4 مهره سفید یا حداقل 5 مهره آبی انتخاب شده است؟

حل:

 اگر x و y و z به ترتیب تعداد مهره‌هایی به رنگ قرمز و سفید و آبی باشند که بناست انتخاب شوند، آن‌گاه اگر x=2 و y=3 و z=4، آن‌گاه جواب 9 است، بنابراین وضعیت مطلوب پیش نمی‌آید بدین‌سان باید حداقل 10 مهره انتخاب کنیم. (پاسخ 10 مهره)

که نتیجه می‌دهد:

پس می‌توان B را برابر {aj و ...ai-2 وaih} در نظر گرفت.

10.                                                                                                        هر دنباله مرکب از (n2+1) عدد صحیح متمایز شامل زیر دنباله‌ای با حداقل (n+1) جمله است که یا دنباله‌‌‌ای افزایشی است یا دنباله‌ای کاهشی.

اثبات: فرض کنیم دنباله مورد بحث ai (I=1,2,…,n2+1) باشد فرض کنیم ti عبارت باشد از تعداد جمله‌های واقع در طولانی‌ترین زیر دنباله افزایشی که با ai شروع می‌شود. اگر به ازای iای داشته باشیم ti=n+1 آن‌گاه کار تمام است. فرض کنیم که به ازای هر I داشته باشیم . قرار می‌دهیم {j=ti:ai}= HJ که در آن n و ...2و1 = j . بدین‌سان n لانه کبوتر H1 و H2 و...Hn را داریم S بناست (n2+1) عدد ti را بین آنها پخش کنیم. از این رو بنابر اصل لانه‌ی کبوتر تعمیم یافته، لانه‌ای مانند Hr شامل بیش از kتا از این اعداد که در آن k مقدار گردشده نقصانی  است، وجود دارد.

بنابراین حداقل (n+1) تا از اعداد ti با هم برابرند. اینک این را ثابت می‌کنیم که (n+1) عدد واقع در دنباله مفروض که متناظر با این اعداد واقع در لانه Hrاند دنباله‌ای کاهشی تشکیل می‌دهند. فرض کنیم  در Hr باشند یا  یا  زیرا عناصر مورد بحث متمایزند. فرض کنیم . حال ، مستلزم این است که زیر دنباله‌ای به طول r وجود داشته باشد که با aj شروع شود. از این‌رو،  نتیجه می‌گیریم که زیر دنباله‌ای به طول (Rh) وجود دارد که با ai شروع می‌شود. این یک تناقص است زیرا با توجه به اینکه ai عنصری از Hr است نمی‌توان زیر دنباله‌ای به طول (r+1) داشت که با ai شروع شود. بدین‌سان وقتی  باید . از این رو، هر (n+1) عنصر دلخواه در Hr زیر دنباله‌ای اکیداً کاهشی بدست خواهد داد.

آذرخور

(آذرخور)

ابوالحسن آذرخوربن استاد جشنش- مهندسریاضیدان ایرانی(نیمه دوم سده چهارم- ثلث اول سده پنجم) ریاضیدانی بوده است معاصر بیرونی – زیرا بیرونی در بعضی از مواضع کتاب آثار الباقیه مطالبی را که از او شنیده است نقل کرده است0 نام او در آثارالباقیه در سه موضع به صورتهای(ابوالحسن آذر خورای یزدانخسیس) و (ابوالحسن آذرخور-المهندسن) و (آذر خور المهندس) و در استخراج الاوتار چاپ حیدر آباد در دو موضع به صورت (آذرخورابن استاد جشنش ثبت شده است0

اثر ریاضی موجود وی:

بیرونی در کتاب استخراج الاوتار حل دو مسئله هندسی را ز وی نقل کرده است0(قربانی:

تحریر اتخراج الاوتار)

 (ابراهیم بن سنان)

ابواسحاق ابراهیم بن سنان ثابت بن قره ریاضیدان و منجم و پزشک مسلمان(296-335) پسر سنان بن ثابت و نوه ثابت بن قره0در سال 296 در خانواده ای از اهل دانش  به دنیا آمد0 بغایت هوشمند و فهیم بود0در انواع علوم دست داشت0 در ریاضیات متخصص بود0 اگر چه در سن 38 سالگی (سال335)در گذشت و عمر فعالیت علمی او کوتاه بود ولی آثار ارزنده ای در رشته های مختلف از وی در دست استکه از روی آن ها می توان دانست که وی در ریاضیات زبر دست و صاحبنظر بوده است0 طریقه وی برای تربیع سهمی بسیار ساده تر از طریق شمیدس و در واقع ساده تزین طزیق حل این مسئله پیش از اختراع حساب انتگرال بوده است0 این اثر ابراهیم بن سناننمونه بارزی است که از روی آن می توان دانست که چگونه ریاضیدانان دوره اسلامی معلوماتی را که از یونانیان به ارث برده بودند دنبال کرده و با فکر مستقل در پیشرفت آن کوشیده اند0

آثار ریاضی موجود وی:

1-رساله فی مساحه القطع ال مکافی

2- مقاله فی طریق التحلیل و الترکیب فی المسائل الهندسیه

3- مقله فی رسم القطوع الثلاثه

4-فی وصف المعانی (التی استخر جها فی)الهندسه و النجوم

5- کتاب فی آلات الاظلال

6- کتاب فی الدوائر المتماسه

(ابن بدر)

از اهل بلنسیه در مشرق اندلس بود و پیش از سال 687 در گذشت0 نسبت او را سوتر و روکلمان و سارتان (اشبیلی) نوشته اند اما رنو نشان داده است که نسبت صحیح وی لنسی است0

اثر ریاضی موجود وی :

اختصارالجبر:

این کتاب در دو بخش است0 موضوع بخش اول آن حل معادلات درجه اول و درجه دوم و مقادیر اصم و ضرب چند جمله ایها و توری نسبتها و معادلات خطی دیو فانتی و بخش دوم آن مجموعی ای از مثال های عددی و مسا ل است در این کتاب از شخص مو سوم به ابو کامل نام  برده شده که ممکن است  همان ابو کامل شجاع بن اسلم مصری باشد متن عربی کتاب اختصار الجبر  با ترجمه  و برسی آن به زبان اسپانیایی در سال 191 در مادرید منتشر شد تبصره سو تر نوشته است که در سال 711ه/1311م محمد بن قاسم غرناطی قطعه ای در شرح کتاب اختصار الجبر ساخته است و همین مطلب را بروکلمان و سارتن تکرار کرده اند0 اما رنو پس از تحقیق اظهار نظر کرده استکه قطعه شعر مزبور ربطی به کتاب اختصارالجبر ندارد0

(ابن بغدادی)

از زندگانی وی هیچ اطلاعاتی در دست نیست0

اثر ریاضی موجود وی:

رساله فی المقادیر المشترکه و المتباینه

این رساله را مولف در جواب کسی که از او راجع بع مقادیر متباین و فرق بین مقادیر منطق و اسم سوال کرده بود نوشته است و در واقع یکی از رساله های متعددیاست که درباره مطلب مقاله دهم کتاب اصول اقلیدس نوشته شده است0 این رساله در سال 1947 م در حیدر آباد دکن (در108صفحه)به طبع رسیده و در سال 1967 م به زبان روسی ترجمه شده است0


ابن خوام(عمادالدین بغدادی)

از شاگردان نصیرالدین طوسی و استاد کمال الدین فارسی بود0 در احوال او نوشته اند : ر علوم عقلی و نقلی استاد و در حساب و طب سرآمد اقران خویش و دارای اخلاق نیک و فس فاضله و سیرت عادله بود0 در بلاغت و انشا نیز دستی داشت و در ایراد خطابه بسیارفصیح و بلیغ بود0در بغداد فقه شافعی تدریس می کرد0 مدتی هم در اصفهان اقامت گزید0 درآن وقت بهاالدینمحمد پسر شمس الدین جوینی حکومت اصفهان داشت و ابن خوام در سال 675کتاب فوائد بهائیهرا در حساب به نام او نوشت و بعدابه بغداد برگشت0 در اواخرعمر جمعی به کفر او شهادت دادند و به قتل او فتوا نوشتند ولی او توانست بادادن مقداری زر به حاکم خود را از این خطر برهاند0

آثار ریاضی موجود وی:

الفوائد البهائیه فی القوائد الحسابیه:

این کتاب دارای مقدمه و پنج مقاله و خاتمه است و چنان که گفته شد این خوام آن را در سال 675در اصفهان به نام بهاالدین محمد جوینی نوشته است0

 

کالین مکلورن

تحقیق راجع به کالین مکلورن

مقدمه

عدد واژه ای است که بیشترین سهم را در علوم و دانش بشری بر عهده دارد و در آن کلمه اسرار بیشماری نهفته است و علم ریاضیات که از منطق انکار ناپذیری برخوردار است بر پایه ی همین کلمه به وجود آمده است و تکامل یافته است.

امروزه عدد و شمارش از مرز گنجایش مغز بشر فراتر رفته است چنانکه در محاسبات فضایی به ناچار از توان استفاده می کند و کامپیوترها هم از همان شیوه به وجود آمده و انسان را در اعماق راز اعداد فرو برده است. لازم به ذکر است که مبنای ذخیره سازی اطلاعات در حافظه ی هر کامپیوتری دو عدد 0 و 1 هستند.

سر آغاز اعداد((یک)) است و همین نخستین عدد اسرار بیشماری را در خود نهفته دارد و با تکامل انسان و نزول ادیان الهی و پرورش عرفان از تمام آفرینش به عدد یک و به عبارت دیگر وحدت و توحید تعبیر می کند و عجیب است که در خط فارسی و عربی نخستین حرف با نخستین عدد هم شکل است و همین مورد باعث شده که عدد یک و حرف الف نشان توحید حضرت باریتعالی برگزیده شود و به همین ترتیب نکات بسیار ظریفی در ادبیات عرفان اسلامی پیدا شود.

 


   دل گفت مرا علم لدنی هوس است         تعلیمم  کن  اگر  تو   را   دسترس   است

   گفتم که الف : گفت اگر هیچ مگوی       در خانه اگر کس است یک حرف بس است

و نیز به نقل از حافظ:

  نیست در لوح دلم جز الف قامت یار               چه   کنم   حرف   دگر   یاد   ندادم   استاد و حال آنکه سخن از عرفان اسلامی در میان آمد و به رمز اعداد اشارتی رفت بهتر است بگوئیم که در بنیاد اصلی اسلام یعنی قرآن کریم نیز بعد ریاضی فراوان است و ذیلا اشاره خواهیم کرد که خداوند در قرآن آفرینش را بر مبنای اصول ریاضی بیان فرموده است.

کلمه عدد در قرآن 6 بار ذکر شده است به این صورت:

( سوره یونس آیه 5 سوره الاسرا آیه 12 سوره مومنون آیه 112 سوره کهف آیه 11 0 سوره جن آیه 24 و نیز سوره جن آیه 28 )

  در سوره ی جن آیه 28 می خوانیم : ( و احصی کل شئ عددا ) یعنی شمرده است همه چیز را بشمار

یعنی اینکه آنچه آفریده شده بدون محاسبه نبوده و همه آنها روی حساب دقیق و منطق ریاضی بوده است.

 

 در آیه 12 سوره الاسرا می خوانیم : ( شب و روز را دو نشان قرار دادیم پس برانداختیم نشانه شب را و نشان روز را روشن گردانیدیم تا از پروردگار خود فضلی بجوئید و بدانید که شمار سال و حسابش را و هر چیزی را تفصیلی مفصل قرار دادیم.

اگر انسان عادی از تلسکوپ های رصدخانه ای بزرگ به فضا نگاه کند و حرکت سیارات را در نظر بگیرد بدون استثنا شگفت زده خواهد شد، چون خواهد دید که میلیونها ستاره و سیاره ی کوچک و بزرگ با سرعتی سرسام آور در حرکتند و هر لحظه به هم نزدیک می شوندو از کنار هم می گذرند.

پس ریاضیات و اصول آن در نظام آفرینش مدخلیت تام دارد و اینکه ریاضی دانان بزرگ جهان آفرینش را در فلسفه ریاضی مولود یک محاسبه ی بی نظیر می دانند سخنی به گزاف نگفته اند.

نگاهی به تاریخ ریاضیات

ریاضیات با شمارش آغاز می شود. این عاقلانه نیست که تصور کنیم شمارش اولیه همان ریاضیات بوده است.

تنها از زمانی می توان علم ریاضی را آغاز شده به حساب آورد که مدارکی از اعداد و شمارش باقی مانده باشد.

در بابیلونیا ریاضیات از 2000 سال قبل از میلاد مسیح شکل گرفته بود. قبل از این یک سیستم علامت ها و نشانه ها در طی مدت زمان بسیار طولانی با پایه ی عددی 60 به وجود آمده بود. این سیستم پدید آمدن اعداد بزرگ و اعداد کسری را ممکن می کرد و در واقع این پایه ریزی توسعه ی یک ریاضی قدرتمندتر بود.

مشکلاتی که در مورد اعداد وجود داشت منجمله مسئله ی سه گانه های پیتاگوریان یعنی  حداقل از سال 1700 قبل از میلاد مسیح مورد بررسی قرار گرفته بود. سیستم معادلات خطی در جهت فهم و درک مسائل عددی مورد مطالعه قرار گرفتند و اینها و امپالشان نهایتا منجر به شکل گیری جبر عددی شدند.

مسائل هندسی که مربوط به اشکال متشابه و سطوح و حجم ها می شدند نیز مورد تحلیل قرار گرفتند و مقدار عددی پی شکل گرفت.

پایه و اساس ریاضیات بابیلونی ها را یونانی ها به ارث بردند و توسعه و رشدی که یونانی ها به آن دادند از سال حدود 450 قبل از میلاد آغاز شد.

متناقض نماهای زنوی الا منجر به شکل گیری نظریه ی عددی دموکراتوس شد. ارائه قانون های کلی دیگر این واقعیت را آشکار کرد که آن سیستم عددی برای اندازه گیری تمام فواصل کافی نیست. این بود که سیستمی جدید از اعداد متفاوت از قواعد و اصولی که قبلا وجود داشت شکل گرفت.

مطالعات در نظام اعداد هندسی به پیدایش ترکیب در اعداد کمک کرد.

نظریات مخروطی ها نقطه ی اوجی در ریاضیات را نشان می دهد که توسط مطالعات آپولونیوس حاصل شد.

کشفیات ریاضی در ادامه توسط علوم ستاره شناسی رشد پیدا کرد. از جمله شاخه ای از علم ریاضیات که به بررسی روابط بین اضلاع و زوایای یک مثلث می پردازد.

بیشترین پیشرفتی که یونانی های باستان در ریاضیات به وجود آوردند بین سالهای 300 تا 200 قبل از میلاد است. بعد از این دوره تحولات ریاضیات در سرزمین های اسلامی ادامه یافت. ریاضی به طرز سریع و موفقی در ایران ، هند و سوریه شکل گرفت. این توسعه بصورت کامل منطبق بر اقدامات یونانی ها نبود ولی علاوه بر پیشرفت های کشورهای اسلامی باعث حفظ اقدامات یونانی ها شد.

از حدود قرن یازدهم آدلارد و سپس فیبوناچی این علوم را از کشورهای اسلامی و یونان باستان به اروپا آوردند.

مهمترین تحولات و تغییرات ریاضی در اروپا از ابتدای قرن 16 میلادی بار دیگر آغاز شد. ابتدا پاچیولی و سپس کاردان و تارتاگلیا و فراری. اینها در مورد جبر عددی و معادلات مربعی و مکعبی بحث می کردند.

کوپرنیک و گالیله دو ستاره شناس مشهور با وارد کردن ریاضیات در مطالعات در باره ی جهان هستی انقلابی عظیم به وجود آوردند.

پیشرفت در جبر تاثیری شگرف در تحقیقات داشت و این بررسی ها و پژوهش ها از ایتالیا با استوین تا بلژیک با ویت گسترش یافت.

در قرن هفدهم میلادی ریاضی دانان بزرگی همچون نپر و بریگز با کشف و مطالعه ی لگاریتم ها توسعه ی زیادی به ریاضیات نوین به عنوان یک علم در محاسبات دادند.

کاوالیری به وسیله روشهای ریاضی محض و دکارت با اضافه کردن قدرت جبر به هندسه کاری مهم انجام دادند.

پیشرفت های محاسباتی با فرما ادامه یافت کسی که به همراه پاسکال مطالعات در احتمالات و قوانین آن را آغاز کردند و اینها همه و همه باعث شدند که ریاضیات به عنوان داغترین و مهمترین مبحثی شود که در قرن هفدهم مطرح شد.

نیوتن بر اساس اقدامات خیلی از ریاضی دانان قبل از خود منجمله معلم خود بارو محاسبات را به عنوان ابزاری قدرتمند برای بررسی و مطالعه ی جهان طبیعت مطرح کرد. بررسی های او نشان دهنده ی یک سری روابط شگفت انگیز در ارتباط ریاضیات ، فیزیک و ستاره شناسی بود.

نظریه ی جاذبه ی نیوتن و قانون نور او ما را به قرن هجدهم وارد می کند.

ما همچنین باید نام لایبنیتز را ذکر کنیم که اقدامات او در زمینه ی پیشرفت علوم محاسباتی پررنگ تر از نیوتن نیز بود. تاثیر لایبنیتز بر اعضای خانواده ی برنولی در مشاهده ی پیشرفت در قدرت و تنوع کاربرد ریاضیات اهمیت داشت.

همهترین و موثرترین ریاضی دان قرن هجدهم اویلر بود که علاوه بر فعالیت در گستره ی وسیعی از علم ریاضیات ، دو شاخه ی جدید به آنها اضافه کرد یکی هندسه ی دیفرانسیلی و دیگری نیز حساب متغیرها. اهمیت اویلر همچنین به علت تحقیق و بررسی در زمینه ی نظریه ی اعداد بود که قبلا توسط فرما آغاز شده بود.

در اواخر قرن هجدهم لاگرانژ بحثی را در مورد تئوری توابع و مکانیک آغاز کرد. دوره ی تغییر قرن از 18 یه 19 ریاضی دانی همچون لاپلاس را به خود دید که اقداماتی در مورد مکانیک اجرام آسمانی انجام داد و همچنین مانگ و کارنو که پیشرفت هایی در زمینه ی هندسه ی مصنوعی صورت دادند.

قرن نوزدهم هزاره ی تغییر و تحولاتی سریع بود. تحقیقات فوریه راجع به گرما از اهمیت ویژه ای برخوردار بود. در زمینه ی هندسه هم پلاکر تغییرات اساسی در هندسه ی تحلیلی داد و همچنین اشتاینر در هندسه ی مصنوعی.

لوباچفسکی و بولیای نیز با تحولاتی که در هندسه ایجاد کردند منجر به شکل گیری شیوه ی تشریح هندسی ریمان شدند.

گاوس که به اعتقاد خیلی ها بزرگترین ریاضی دان تمتم اعصار استدر زمینه ی تشابه اعداد کامل تحقیق کرد.

اقدامات او در زمینه ی هندسه ی دیفرانسیلی در واقع انقلابی در این مبحث بود. او همچنین کمک بزرگی به ستاره شناسی و علم مغناطیس کرد.

قرن نوزدهم کارهای گالو راجع بخ معادلات را به همراه داشت. بحث های گالو در واقع نوید سیوه ای نو در بررسی و تحقیقات ریاضی را می داد که در قرن بیستم محقق شد.

کائوچی بر پایه ی کارهای لاگرانژ در زمینه ی توابع تحلیل های دقیقی راجع به نظریه ی توابع با متغیرهای پیشیده انجام داد. این اقدام توسط وایراشتراس و ریمان ادامه پیدا کرد.

هندسه ی جبری توسط کایلی مورد بررسی قرار گرفت ، کسی که مطالعات او راجع به ماتریس ها و جبر خطی به همراه کارهای همیلتون و گراسمن آن را کامل کرد.